If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23=v^2+3
We move all terms to the left:
23-(v^2+3)=0
We get rid of parentheses
-v^2-3+23=0
We add all the numbers together, and all the variables
-1v^2+20=0
a = -1; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-1)·20
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-1}=\frac{0-4\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-1} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-1}=\frac{0+4\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-1} $
| (9+x)3=6x-18 | | 84=3x^2 | | 49=-5x-6 | | -10=x-6-4 | | 20=j+1 | | 0.45/4.2=p/14 | | 1/5x=1/25 | | 0.2(10x-30)+2x=-97 | | 3+4x=72 | | 11/10=n/14 | | -1+5/4b=-16 | | 4x+4=-2(3x+4) | | (2x+3)+(2x+3)+x+x=72 | | 7+2x=-(x^2/7) | | 2(n+11)=17 | | w/8+4=10 | | x=94x+3 | | 135=(9/5)n | | 7(1-4n)+7n=7+n | | 2(-5x+5)=38-6x | | 2(-4-3n)=-22+n | | 18/x=6/10 | | -2(6p-1)=27-7p | | 2x+3(1.5-1.5)=8/3 | | x=x2-6x+14 | | (2x-20)+(x+20)+(2x-40)=180 | | 24=n/0.6 | | 9-2x-9-16x=-14x-7-4-11 | | -2(4r-5)=-2(3+6r) | | 3-n+4=2 | | 23+40+x=180 | | 23+5+x=180 |